

The Impact of Differing Door Widths on Passenger Movement Rates COMPRAIL 2014, Rome

Harris, Risan & Schrader Railway Consultancy & NSB

Registered Office: 43a Palace Square, Crystal Palace, London SE19 2LT Registered in England & Wales no. 3270536

Structure of this Presentation

- 1. The Problem: Background & Previous Work
- 2. Work in Norway
- 3. Wider Analysis
- 4. Hypothesis
- 5. Conclusions

1 The Problem

- Increasing traffic puts pressure on capacity
- Urban rail capacity determined by station stops
- Many rail simulations make simplistic assumptions about station stops
- This paper demonstrates that an apparentlysimple relationship isn't

1 Factors Affecting Station Stops

- Detailed modelling undertaken
 - Harris, Graham, Anderson & Li (TRB, Feb 2014)
- Three types of variables
 - Passenger characteristics
 - Station characteristics
 - Rolling stock characteristics

1 The Impact of Door Width: Literature Review

- Prof. Weidmann: $Flow = f(d^{-0.1})$
- Heinz: different types of movement, subject to edge
 effects
 Effective width

1 Previous Work: Data Available

- Ongoing multi-year joint RTSC/RCL project with c. 150 surveys
- Focussed at the critical door of metro and busy urban railways
- Each with 30 detailed observations of
 - Passenger movements
 - Passenger times
 - Times of other functions (e.g. despatch, door closing)
 - Train & platform characteristics

1 Previous Work: Analysis

- Formal statistical analysis using multivariate fractional technique to avoid issue of non-linearity
- Despite expectations, door width was not a significant variable
- Analysis of residuals

2 Work in Norway

- NSB runs up to 20tph through Oslo tunnel
- Commercially-critical part of their operation
 but punctuality lower than desired
- A mix of train services doesn't help

2 Work in Norway

- Initial analysis showed that rolling stock clearly was a determinant of passenger movement rates
 - But was this door width and/or other features?

3 Wider Analysis

- NSB argued that door width alone was perhaps not a simple determinant of flow
- Supported by one of Heinz's hypotheses

Figure 31. A hypothesis for a new flow-width relationship.

3 Wider Analysis

 Investigation of the full international dataset showed a step function in the impact of door width

3 Wider Analysis

- Platform management measures can be implemented e.g. boarders to stand aside
- But international nature of dataset showed that problems were also arising in "wellbehaved" environments e.g. Taiwan

4 Hypotheses: 1

- Threshold door width values are important in determining flow:
 - 0.75m enables one movement
 - 1.25m enables two movements
 - 1.7m enables three movements
- ...but standbacks are
 more important

4 Hypotheses: 2

- Detailed observations led to a different hypothesis:
- Door width is not critical because the gap left by boarding passengers is narrower than the door

5 Summary

- Door width has generally been assumed to be a linear determinant of passenger flow on/off trains
- Despite variations in culture, it is not
- A stepped function is appropriate in forecasting movement rates
- But these may not be achieved if boarding passengers do not keep back

