

Planning for a Successful Railway 5th Annual African Railway Conference, 26/07/2012

Dr Nigel G Harris, Managing Director

Registered Office: 43a Palace Square, Crystal Palace, London SE19 2LT Registered in England & Wales no. 3270536

Structure of this Presentation

- Railway objectives
- Planning process
- Methods of demand forecasting
- The iterative process

1 Railway Objectives

1 Railway Objectives

- A number of objectives can be appropriate:
 - Maximise profit
 - Maximise revenue
 - Maximise demand
 - Reduce road traffic congestion

1 Railway Objectives

- A number of objectives can be appropriate:
 - Maximise social benefit/employment
 - Military traffic
 - Minimise environmental impact of transport
 - Increase economic activity
 - Local
 - National

2 The Planning Process

2 Planning Process

- So: What problem are you trying to solve?
 (see previous objectives)
- Only then can we think about doing it efficiently
 - Too many railways are poorly-focussed

2 Planning Process

Clear chain of authority From commercial/customer point of view

3 Methods of Demand Forecasting

3 Types of Methods

Aggregate v disaggregate
 - 'Top-down' v 'bottom-up'

- Aggregate perhaps more useful in the African freight context
 - Detailed data not available
 - Commercial confidentiality

3 Types of Methods

- Revealed Preference v Stated Preference
 historic v 'what if?'
- Might feel more comfortable with historic but trends may not continue
 - Customer behaviour in the future may be different

3 Econometrics

- Statistical analysis of underlying factors
- Only for established operators with a history

 Can examine impact of (e.g.) GDP, oil prices

3 Aggregate

- Split down generic data with a target mode share
 - e.g. for agricultural or industrial production
- Fails to take account of service quality

 Frequency, punctuality, price,...

3 Trip End Forecasting

- Population-based methods
 - e.g. One return work trip per day
 - Existing mode share data an unreliable indicator of potential where no established market
 - No account of geography or competitive position

3 Gravity Model

$$T_{ij} = k * \underline{P_i * P_j}_{dij^2}$$

where T_{ij} = trips between i and j P_i , P_j = populations of i and j d_{ij}^2 is the distance between i and j k = constant (typically 0.1 for annual trips in Britain)

- Reasonable relationship for all modes
 - Existing mode share data an unreliable indicator of potential
 - No account of competitive position

3 Generalised Cost Analysis

 $GC = (F/V) + b_1 t_a + b_2 t_w + b_3 t_r + n.I + b_0$

- An "index of hassle"/basket of attributes
- Approach applicable for both passenger and freight; better for disaggregate
- Forces thought about door-to-door journey
 - Important implication to counter those who are focussed solely on fares – perhaps passengers would better be served by improvements in quality? ne Railwav

3 Stated Intentions

- "Would you use my railway service?"
- Very unreliable predictor of use
 - Vicarious response bias
 - Policy response bias
 - Lack-of-understanding bias
- Don't use it!
 - But is the basis for a better method

3 Stated Preference

- Offers 6-9 choices of options to respondents
- Each option has e.g. 3 characteristics
- These chosen carefully to ensure that respondents make real trade-offs
- Can deduce much about behaviour
 e.g. Value of Time
 - Potential benefit of particular features

3 Stated Preference

- Useful in two main areas:
 - Small quality variables (e.g. security), difficult to discern through other methods
 - Where respondents have no previous experience
- Real potential in African environment where rail network sparse

Clear chain of authority

 From commercial point of view

- Railways are classic 'systems'
 - Everything impacts on everything else
 - Decisions must reflect this
- Planning means compromise
 - Straighter faster route for end-to-end traffic or serve intermediate communities better?
 - Flatter route aids freight or increases capex?
 - Value engineering trade-offs essential

- More station stops reduce end-to-end speed
 - Large benefit to (a few?) local people
 - Small disbenefit to (more?) long-distance passengers
- Turning commuter trains short of their destination
 - Increases frequency to inner suburbs
 - Reduces frequency to outer suburbs

Conclusions

Conclusions

- Keys to success:
 - Having clear objectives
 - A business-like approach
- Many demand forecasting tools available
 - do ensure consideration of geographic variation, competitive position & quality
- Iterative nature of service forecasting/ planning essential if the best outcomes are to be realised

